BFlavor: an Optimized XML-based Framework
for Multimedia Content Customization

Davy Van Deursen*, Wesley De Neve*, Davy De Schrijver*, and Rik Van de Walle™

Department of Electronics and Information Systems - Multimedia Lab
*Ghent University - IBBT
*Ghent University - IBBT - IMEC
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
e-mail: davy.vandeursen@ugent.be

Abstract. During recent years, several languages have
been developed that allow to automatically create de-
scriptions containing information about the high-level
structure of binary multimedia resources. Such an ap-
proach makes it possible to tackle the diversity of the
current networks, terminals, and multimedia formats
in a transparent way. This paper discusses the funda-
mentals of BFlavor, a novel language for describing the
structure of binary multimedia resources. BFlavor has
been developed to combine the strengths of MPEG-21
BSDL and XFlavor and to avoid their weaknesses. The
three different scalability axes of the H.263+ coding for-
mat (i.e., temporal, spatial, and Signal-to-Noise Ratio
scalability) are exploited by making use of MPEG-21
BSDL, XFlavor, and BFlavor. We show through exper-
iments that BFlavor maintains the constant memory
consumption of XFlavor, generates compact descrip-
tions, and outperforms XFlavor and MPEG-21 BSDL
in terms of execution times.

Index Terms -BFlavor, content adaptation, H.2634,
MPEG-21 BSDL, XFlavor

1 Introduction

Today, in the world of multimedia, there is a huge
heterogeneity in terminals, networks, and multime-
dia formats used. These differences have to be taken
into account when multimedia resources have to
be delivered to different devices. Scalable coding
makes it possible to tackle this tremendous diver-
sity. It enables the extraction of multiple (lower
quality) versions of the same multimedia resource
without the need of a complete encode-decode pro-
cess. This is in line with the vision of the Universal
Multimedia Access (UMA) philosophy: a multime-
dia resource only needs to be created once, after
which it can be published to all possible terminals
using all possible different networks. It is important
to realise that an efficient solution for the hetero-
geneity does not only imply the usage of scalable
coding, but also the usage of a complementary con-
tent adaptation system. One could build a content

adaptation system operating directly onto the bit-
stream. However, such an implementation will be
error prone and the adaptation system will only be
capable to support one bitstream format. There-
fore, a generic approach is needed for the adapta-
tion of (scalable) bitstreams. Such an architecture
has to support multiple multimedia formats and
it should be possible to extend it with new multi-
media formats. These adaptive multimedia systems
can be realised by relying on textual descriptions of
the high-level structure of scalable bitstreams (usu-
ally in XML format). In this paper, a new language
is introduced for the creation of these textual de-
scriptions.

The outline of this paper is as follows. In Sec-
tion 2, the concept of bitstream structure descrip-
tion languages is elaborated. Two existing lan-
guages, in particular MPEG-21 BSDL and XFlavor
are discussed. Section 3 introduces BFlavor (BSDL
+ XFlavor), our new bitstream structure descrip-
tion language. In Section 4, this new approach is
validated by presenting some experimental results,
hereby targeting the H.263+ coding format. Fi-
nally, conclusions are made in Section 5.

2 Bitstream Structure Description
Languages

2.1 Overall Approach

A possible architecture for the customization of
(scalable) bitstreams is shown in Fig. 1. Such
an adaptation system can be realized by relying
on Bitstream Syntax Descriptions (BSDs). A bit-
stream structure description language makes it pos-
sible to describe the structure of a specific bit-
stream format. A text-based BSD is generated by
a bitstream-to-BSD parser which interprets the
structure of the bitstream. The BSD typically con-
tains information about the high-level structure

(information about packets, headers, or layers of
data) of a (scalable) bitstream. Such a BSD can be
seen as an intermediate format that acts as an ab-
straction layer for the bitstream. The most elegant
manner to store the text-based BSD is by using
the ubiquitous XML specification. The XML for-
malism does not only allow repurposing many ex-
isting tools for manipulating XML-based BSDs, it
also allows a straightforward integration with other
metadata standards, such as the MPEG-7 speci-
fication. According to a given set of constraints,
the BSD is transformed, resulting in a customized
BSD. Because of the high-level nature of the BSD,
only a limited knowledge about the structure of
a bitstream is required to perform this transfor-
mation. Finally, the customized BSD is used by a
BSD-to-bitstream parser to generate an adapted
bitstream. The major advantage of a BSD-driven
approach for the customization of (scalable) bit-
streams is its generic architecture. To support a
new multimedia format, only a description of the
structure of a bitstream format in the specific lan-
guage has to be created while the same generic
parsers can still be used.

2.2 MPEG-21 BSDL

The MPEG-21 Bitstream Syntax Description Lan-
guage (MPEG-21 BSDL) is a tool of part 7 (Digital
Item Adaptation, DIA) of the MPEG-21 specifi-
cation. It is built on top of the World Wide Web
Consortium’s (W3C) XML Schema Language and
is able to describe the structure of a (scalable) bit-
stream in XML format [1]. The primary motiva-
tion behind the development of MPEG-21 BSDL
is to assist in customizing scalable bitstreams [2].
The Bitstream Syntax Schema (BS Schema), which
contains the structure of a certain media format, is
used by the BintoBSD Parser to generate a BSD
for a given (scalable) bitstream. After the BSD is
transformed, an adapted bitstream is created by us-
ing the BSDtoBin Parser, which takes as input the
BS Schema, the customized BSD, and optionally
the original bitstream.

2.3 XFlavor

The Formal Language for Audio-Visual Ob-
ject Representation, extended with XML features
(XFlavor) is a declarative C++-like language to
describe the syntax of a bitstream on a bit-per-
bit basis. XFlavor was initially designed to sim-
plify and speed up the development of software that

bitstream-to-BSD
parser

bitstream
B
B

bitstream structure
description language

set of constraints
(e.g., usage

description of the
structure of a
bitstream

environment
descriptions)

N customized
N\ BSD

\
o ____________y| BSD-to-bitstream optional

parser

’_L‘

customized
bitstream

Fig. 1. A BSD-driven content adaptation framework

processes audio-visual bitstreams by automatically
generating a parser for these bitstreams. By ex-
tending this automatically generated parser with
XML features, it was possible to translate the syn-
tax of a bitstream in XML format [3]. The XFlavor
code, which contains a description of the syntax of
a certain media format, is translated by the Fla-
vorc translator to Java or C++ classes. This set
of classes is compiled to a coding format-specific
parser. XFlavor comes with the Bitgen tool for cre-
ating an adapted bitstream, hereby guided by the
customized BSD. Note that the Flavorc translator
is also able to generate an XML Schema which can
be used to validate the BSD that is created by the
automatically generated parser.

3 BFlavor: Harmonizing MPEG-21
BSDL and XFlavor

Although MPEG-21 BSDL and XFlavor can be
used as stand-alone tools [4], a harmonized ap-
proach can combine the strengths of the two tech-
nologies. In XFlavor, the XML schema is only
used for validation purposes. The bitstream gen-
erator (i.e., Bitgen) only uses information from
the BSD and thus is independent of the XFlavor
code. Hence, the complete bitstream data are ac-
tually embedded in the BSD, resulting in poten-
tially huge descriptions. On the contrary, MPEG-
21 BSDL makes use of a specific datatype to point
to a data range in the original bitstream when
it is too verbose to be included in the descrip-
tion (i.e., by making use of the language construct
bsl:byteRange). This results in BSDs containing
only the high-level structure of the bitstream. The
strengths of XFlavor are the fast execution speed

class Picture{
Base_layer b_layer;
Enhancement_layer e_layer;

}

class Bitstream{
while (1)
Picture picture;

¥

Fig. 2. BFlavor code example

and the low and constant memory consumption of
the coding format-specific parser, while the Binto-
BSD Parser of MPEG-21 BSDL struggles with an
unacceptable execution speed and increasing mem-
ory consumption (see Section 4) caused by an in-
efficient XPath evaluation process. This is due to
the fact that the entire description of the bitstream
structure is kept in system memory in order to allow
the evaluation of arbitrary XPath 1.0 expressions.

BFlavor, our novel bitstream structure descrip-
tion language, bridges the gap between MPEG-21
BSDL and XFlavor. It is developed to combine the
strengths of MPEG-21 BSDL and XFlavor, i.e., to
generate a compact high-level BSD at a fast execu-
tion speed and with a constant memory consump-
tion. It is built on top of XFlavor by defining a num-
ber of restrictions and extensions (such as MPEG-
21 BSDL is build on top of W3C XML Schema). By
using the automatically generated parser of BFla-
vor, it is possible to generate BSDs that can be fur-
ther processed by the BSDtoBin Parser of MPEG-
21 BSDL. Note that one could also modify the
MPEG-21 BSDL language specification in order
to achieve a feasible execution speed and a con-
stant memory consumption [5]. The performance
of this approach, together with the performance of
MPEG-21 BSDL and XFlavor, will be compared to
BFlavor’s performance in Section 4.

3.1 Working of BFlavor

The BFlavor adaptation chain is illustrated in
Fig. 4. The BFlavor code describes the structure
of a specific bitstream format. In Fig. 2, an ex-
ample is given of a BFlavor code fragment. It de-
scribes Pictures that contain a Base_layer and an
Enhancement_layer. The BFlavorc translator uses
this code to generate Java source classes that can
be compiled to a coding format-specific parser. So
far, the XFlavor approach has been followed. From
this point, a switch is made to the MPEG-21 BSDL
approach. The coding format-specific parser gener-
ates a BSD which can be further processed by the

<!-- before transformation -->
<Bitstream>
<Picture>
<Base_layer><!-- ... --></Base_layer>
<Enhancement_layer><!-- ... --></Enhancement_layer>
</Picture>
<Picture>
<Base_layer><!-- ... --></Base_layer>
<Enhancement_layer><!=-- ... --></Enhancement_layer>
</Picture>

</Bitstream>

<l--after transformation -->
<Bitstream>
<Picture>
<Base_layer><!-- ...
</Picture>
<Picture>

--></Base_layer>

<Base_layer><!-- ...
</Picture>
</Bitstream>

--></Base_layer>

Fig. 3. An example of a BSD before and after a trans-
formation

coding format
specific parser

customized
BSD

transformation
Java classes
BFlavorc

BFlavor code

I e customized
@' """"" bitstream

Fig. 4. The BFlavor adaptation chain

BS Schema |—| BSDtoBin |

efficient and format-agnostic BSDtoBin Parser of
MPEG-21 BSDL. An example of a such a BSD is
illustrated in Fig. 3. The BSDtoBin Parser needs a
BS Schema. This schema contains the structure of
a specific bitstream format, analogous to the BFla-
vor code. Therefore, the BFlavorc translator is also
able to generate a BS Schema from the BFlavor
code. Thus, after the transformation of the BSD,
the BSDtoBin Parser uses the customized BSD, the
generated BS Schema, and the original bitstream
to generate a customized bitstream. As a result
of our approach, it is possible to generate BSDs
with the fast execution speed and the low memory
consumption of the coding format-specific parser
of XFlavor, while the generated BSDs are compact
because they only contain a description of the high-
level structure of the (scalable) bitstream.

3.2 Implementation details

In Section 3.1, the general working of BFlavor was
illustrated. In order to realize the construction of
BFlavor (i.e., the generation of a parser producing
BSDs usable by the BSDtoBin Parser of MPEG-
21 BSDL), a few restrictions and extensions have
to be defined on top of XFlavor. This section will

discuss these restrictions and extensions, as well as
the methodology needed to implement them.

Restrictions and extensions on top of XFla-
vor Section 3.1 has shown that the Flavorc trans-
lator has to be able to generate Java source classes
and a BS Schema using the BFlavor code. This
is only possible when a number of restrictions are
defined for this BFlavor code. Because the BFla-
vor code is a C++-like code, it contains variables.
These variables can be parsable (i.e., they retrieve
their value from the bitstream) or non-parsable
(i.e., regular C++ variables). The parsable vari-
ables are similar to the xsd:element language con-
struct in MPEG-21 BSDL. Non-parsable variables
cannot be translated to an MPEG-21 BSDL lan-
guage construct which implies a prohibition on
the use of non-parsable variables in the BFla-
vor code. Other language constructions in XFla-
vor which cannot be translated to MPEG-21 lan-
guage constructs are the map and bac construc-
tions as well as multi-dimensional arrays. Hence,
only one-dimensional arrays are allowed in BFla-
vor as they can be translated to elements with a
bs2:n0ccurs attribute. A last restriction is the
use of the built-in operators of XFlavor. Only
the nextbits () operator can be translated to an
MPEG-21 BSDL element (i.e., an element with the
bs2:ifNext attribute). This implies that the other
built-in operators (i.e., nextcode(), numbits(),
lengthof (), isidof (), and skipbits()) are pro-
hibited in BFlavor.

XFlavor also needs some extensions to be able to
generate Java source classes and a BS Schema. A
first extension is the possibility to include informa-
tion about the root element, namespace, and target
namespace in the BFlavor code. A second extension
is related to datatypes. In MPEG-21 BSDL, one
can have elements and types, while XFlavor only
has classes. As such, it must be possible to signal
in the XFlavor code that a class represents a type
or an element. There are three options to signal an
XFlavor class as a type: the class definition has to
be translated to a complexType element; the class
definition has to be translated to a simpleType el-
ement, hereby providing information about what
procedural object to use (i.e., by making use of
the bs0O:implementation attribute in MPEG-21
BSDL); or the class definition has to be translated
to a simpleType element, hereby providing infor-
mation about the length of a start or end code. A
disadvantage of XFlavor was the lack of possibility

%targetns{H_263%targetns}
%ns{h263%ns}
hroot{Byte_stream¥root}

Yalign{%align}
class Stuffing{}

%payload{0000FC-0000FF%payload}
%payload{000080-000083%payload}
class GOB_Payload{}

class Picture{
bit (22) picture_start_code = 0b0000000000000000100000;
bit (8) temporal _reference;
Ptype ptype;
if (ptype.source_format == 7)
Plus_Header plus_header;
bit (5) pquant;

if (ptype.source_format != 7
bit (1) cpm;

if (ptype.source_format != 7 && cpm == 1)
bit (2) psbi;

if (ptype.optional_pbframes_mode == 1){

bit (3) temporal_reference_b;
bit (2) dbquant;
¥
do{
bit (1) pei;
if (pei == 1) bit(8) psupp;
}while(pei == 1);
Stuffing estuff;
GOB_Payload payload;
}

class Bitstream{
while (1)
Picture picture;

}

Fig. 5. Partial BFlavor code for the H.263+ coding for-
mat

<Bitstream>
<l== ... ==
<Picture>
<picture_start_code>32</picture_start_code>
<temporal_reference>0</temporal_reference>
<Ptype><!-- ... --></Ptype>
<Plus_Header><!-- ... --></Plus_Header>
<pquant>13</pquant>
<do_pei><pei>0</pei></do_pei>
<estuff>15</estuff>
<payload>10 3899</payload>
</Picture>
<K== ... ==
</Bitstream>

Fig. 6. Example of BSD for a H.263+ bitstream

to refer to the original bitstream. BFlavor solves
this problem by defining a payload datatype that
can be translated to a simpleType element with re-
striction to the bs1:byteRange datatype of MPEG-
21 BSDL. The last extension is a datatype which
is able to make the bitstream byte-aligned. This is
mapped to the non-normative bs0:£illByte con-
struct in MPEG-21 BSDL.

Methodology The extensions are implemented by
using the verbatim codes of XFlavor. These codes
are enclosed within the verbatim delimiters %x{
and %x} in the XFlavor code. The symbol x hereby
denotes the type of the verbatim code. In Fig. 5,
a partial BFlavor fragment for the H.263+ cod-
ing format is illustrated. Specific verbatim codes
are used to signal the root element, namespace,

25,0

——BintoBSD_m
20,0 —— = XFlavor
—+— BFlavor

15,0

Execution time (s)

o

o
e L

0 500 1000 1500 2000

#Pictures

2500 3000 3500 4000

Fig. 7. Execution speed (SNR)

and target namespace. Classes that represent a
type will be preceded by the specific verbatim code
associated with that type. In the example, the
Stuffing class represents an alignment type, while
the GOB_Payload class is a payload type. The value
of the verbatim codes is used to pass some addi-
tional information about the datatype. For exam-
ple, the payload datatypes contain some start codes
as additional information as illustrated with the
GOB_Payload class.

The modifications to create BFlavor on top of
XFlavor have to be made inside the Flavorc trans-
lator. The working of this translator is as follows.
The XFlavor code is parsed by making use of a
parser generated by Lex/Yacc. Based on the in-
ternal representation, generated by the Lex/Yacc
software, an XML Schema or a set of Java or C++
classes is generated. To implement the restrictions
and extensions in the Flavorc translator, modifica-
tions have to be made in the Lex and Yacc descrip-
tion, as well as in the core of the Flavorc translator.
In the Lex and Yacc description, the new verba-
tim codes have to be inserted in order to be recog-
nized by the generated Lex/Yacc-parser. The core
of the Flavorc translator has to be modified in two
manners. Firstly, the generated XML Schema rep-
resents a BS Schema. Secondly, the generated Java
or C++ classes are able to generate an XML docu-
ment which can be further processed by MPEG-21’s
BSDtoBin Parser.

4 Experimental Results

To validate our harmonized approach, a compari-
son of MPEG-21 BSDL, XFlavor, and BFlavor is
provided in terms of execution times, memory con-
sumption, and file sizes. The languages are used

EAMPEG-21 BSDL
50,0 — EBFlavor
XFlavor

File size (MB)

#Pictures
Fig. 8. BSD file sizes (Temporal)

Table 1. Bitstream characteristics

Base Layer [Enhancement Layer]

[#Pic.| Res. [QP [#Pic. [Res. | QP |
Spat. | 300 |[QCIF | 13 | 300 CIF 13
Temp. | 300 |QCIF| 13 | 600 |QCIF| 13
SNR 300 | QCIF| 25 | 300 |QCIF 5

to exploit the scalability properties of H.263 Ver-
sion 2 bitstreams. H.263 Version 2, also known
as H.263+4, supports both temporal, spatial, and
Signal-to-Noise Ratio (SNR) scalability. The Fore-
man sequence with QCIF (176x144) resolution was
used as test sequence. Table 1 shows the bitstream
characteristics for the encoded test sequence with
300 pictures. The characteristics for the sequences
with 900, 1800, and 3600 pictures are similar. The
technologies generate a BSD of the bitstream which
contains the base layer and the enhancement layer.
During the transformation, the enhancement layer
is dropped by using eXtensible Stylesheet Language
Transformations (XSLTs). Finally, a bitstream is
generated from the customized BSD which contains
only the base layer. All tests were done five times,
after which an average was taken.

The experiments were done on a PC having an
Intel Pentium D 2.8 GHz CPU and 1 GB of sys-
tem memory at its disposal. The operating system
used was Windows XP Pro SP2, running Sun Mi-
crosystems’s Java 2 Runtime Environment (Stan-
dard Edition version 1.5). SAXON 8 was used for
applying XSLTs to BSDs. The memory consump-
tion was registered by relying on the JProfiler 4.0
software package. The TMN-3.0 H.263 codec was
used to encode/decode the test sequences.

The results of the BSD generation speed are
shown in Table 2. Note that BintoBSD, stands
for the original BintoBSD Parser (v1.2.1), while

Table 2. BSD generation speeds

BintoBSD,. | BintoBSD,,, | BF1. | XFI.

’ ‘#PiC- (s) (s) ‘ (s) ‘ (s) ‘
300 278.6 2.7 0.3 | 1.0

Spat. | 900 2332.2 6.6 0.7 | 3.1
1800 9127.7 12.4 1.3 | 5.8

3600 N/A 18.4 1.9 | 9.2

300 232.6 2.4 0.2 | 0.6

Temp. | 900 2013.1 6.4 0.6 | 1.6
1800 8712.6 11.2 1.0 | 3.2

3600 N/A 19.8 1.5 | 5.8

300 270.8 2.7 0.3 | 1.0

SNR 900 2288.5 6.6 0.7 | 2.8
1800 8902.2 12.1 1.2 | 5.5

3600 N/A 23.5 2.3 | 11.1

Table 3. Adaptation and bitstream generation times

[XSLT (s) [Bitstream Generation (s) |
[#Pic. | BSDL [BFL [XFI. | BSDL [BFL | XFI. |
300 0.6 0.6 | 2.6 0.6 0.6 1.6
Spat. 900 1.1 1.1 5.1 0.7 0.7 4.7
1800 1.6 1.6 | 9.7 1.0 0.9 9.3
3600 2.3 2.3 | 14.7 1.2 1.2 14.2
300 0.5 0.5 | 2.2 0.6 0.6 1.5
Temp. | 900 0.9 0.8 | 3.1 0.7 0.7 6.1
1800 1.4 1.3 | 8.1 0.9 0.9 12.1
3600 2.5 2.7 | 15.5 1.3 1.3 24.3
300 0.6 0.6 | 2.1 0.6 0.6 1.6
SNR 900 1.1 1.0 | 4.2 0.7 0.7 5.6
1800 1.6 1.7 1 7.8 1.0 0.9 11.2
3600 2.6 2.7 | 16.2 1.3 1.4 16.3

BintoBSD,,, stands for a modified version of the
BintoBSD Parser which supports the BSDL ex-
tensions for achieving a usable adaptation frame-
work [5]. It is clear that the BintoBSD, Parser can-
not be used in practice because of the quadratic
increasing execution time and the increasing mem-
ory consumption (35.0 MB and 62.0 MB for a
bitstream having 900 and 1800 Pictures respec-
tively). This is due to the fact that the entire BSD
is kept in memory in order to allow the evalua-
tion of XPath expressions. The BintoBSD,,, Parser,
the BFlavor-based parser, and the XFlavor-based
parser all maintain a low and constant memory con-
sumption (less than 2 MB). Furthermore, Fig. 7
illustrates that these parsers show a linear behav-
ior in terms of execution speed. One can see that
the BFlavor-based parser outperforms the XFlavor-
based parser and the BintoBSD,,, Parser. Table 3
shows the transformation and bitstream generation
times for the adapted BSDs. The most notable is
the poor transformation speed for the BSDs gen-
erated with XFlavor. This is because all the infor-
mation to create the adapted bitstream has to be
included in the customized BSD, resulting in large
BSDs. Fig. 8 illustrates the difference in BSD file
sizes between XFlavor, MPEG-21 BSDL, and BFla-

Vor.

5 Conclusions and Future Work

We have presented BFlavor, a new solution for
XML-driven content adaptation. BFlavor is de-
signed to combine the strengths of XFlavor and
MPEG-21 BSDL and to avoid their weaknesses. Ex-
perimental results have shown that BFlavor main-
tains the constant memory consumption of XFlavor
and outperforms XFlavor and MPEG-21 BSDL in
terms of execution times. Thanks to its possibil-
ity to refer to the original bitstream, BFlavor is
also able to describe the high-level structure of a
bitstream, resulting in compact BSDs that can be
further processed by MPEG-21’s BSDtoBin Parser.
Future work will focus on the exploitation of scal-
ability of the H.264/AVC SVC coding format by
relying on BFlavor. This will require further devel-
opment of BFlavor.

Acknowledgements

The research activities as described in this pa-
per were funded by Ghent University, the Inter-
disciplinary Institute for Broadband Technology
(IBBT), the Institute for the Promotion of Innova-
tion by Science and Technology in Flanders (IWT),
the Fund for Scientific Research-Flanders (FWO-
Flanders), the Belgian Federal Science Policy Office
(BFSPO), and the European Union.

References

1. Devillers, S., Timmerer, C., Heuer, J., Hellwagner,
H.: Bitstream Syntax Description-Based Adaptation
in Streaming and Constrained Environments. IEEE
Trans. Multimedia 7 (3) (2005) 463-470

2. De Schrijver, D., Poppe, C., Lerouge, S., De Neve,
W., Van de Walle, R.: MPEG-21 Bitstream Syntax
Descriptions for scalable video codecs. (accepted for
publication in Multimedia Systems Journal)

3. Hong, D., Eleftheriadis, A.: XFlavor: Bridging Bits
and Objects in Media Representation. In: Proceed-
ings, IEEE Int’l Conference on Multimedia and Expo
(ICME), Lausanne, Switzerland (2002)

4. De Neve, W., Van Deursen, D., De Schrijver, D.,
De Wolf, K., Van de Walle, R.: Using Bitstream
Structure Descriptions for the Exploitation of Multi-
layered Temporal Scalability in H.264/MPEG-4
AVC’s Base Specification. In: Proc. of PCM 2005,
Chejudo, Korea, Springer-Verlag (2005) 641-652

5. De Schrijver, D., De Neve, W., De Wolf, K., Van de
Walle, R.: Generating MPEG-21 BSDL Descriptions
Using Context-Related Attributes. In: Proceedings
of the 7th IEEE International Symposium on Mul-
timedia, Irvine, USA (2005) 79-86

